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Abstract: In this paper we present dominating sets, minimum diameter spanning tree for grid graph and 
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1. INTRODUCTION  

E.J. Cockayne and S.T. Hedetniemi [1] introduced 

the concept dominating set. Frank Harary, Robert 

Z.Norman and Dorwin Cartwright [2] explained an 

interesting application in voting situations using the 

concept of domination. C.L. Liu [3] also discussed 

the application of dominance to communication 

network,Where a dominating set represents a set of 

cities which acting as transmitting Stations can 

transmit messages to ever y city in the network. A 

subset S of vertices from V is called a dominating 

set for G if every vertex of G is either a member of 

S or adjacent to a member of S. A dominating set 

of G is Called a minimum dominating set if G has 

no dominating set of smaller cardinality. The 

cardinality of minimum dominating set of G is 

called the dominating number for G and it is 

denoted by γ (G) Haray, F. (1969) Graph Theory. 

Addsion Wesley, Reading MA. [4]. 

Chandrasekaran, V.T. and Rajasri.N (2018) 

Minimum Diameter Spanning Tree [5]. In this 

paper, we discuss few simple connected graphs for 

which the domination numbers of the graph and 

that of its minimum diameter spanning trees are the 

same. 

The (m,n) lollipop graph is a graph obtained by 

joining a complete graph Km  to a path Pn on n 

vertices and its denoted by Lm,n [10] . and the sunlet 

graph is the graph on vertices obtained by attaching 

pendent edges to a cycle graph. Sunlet graphs are 

trivially unit distance, as well as matchsticks graphs 

[11] and  A graph consisting of two rows of paired 

nodes in which all nodes except the paired ones are 

connected with straight lines;it is the complement 

of the ladder graph, and the dual graph of the 

hypercube .  

 
Some definitions: 

         Definition: Let G  =  ,V E  be a graph. A 

subset S of V  is called dominating set if every 

vertex in V S   is adjacent to a vertex in S . The 

minimum cardinality of a dominating set in G  is 

called the domination number of G  and it is 

denoted by  G . 

 Definition: The spanning tree T of the simple 

connected graph G  is said to be a minimum 

diameter spanning tree. if there is no other 

spanning tree T   of G  such that    'd T d T

The minimum diameter spanning tree is denoted by 

 dM T . 
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Definition: the diameter of a graph is length of the shortest path between the most distance node and it is 

denoted by d .  

Theorem 1:  If G  is a connected graph without pendent vertex. Then  
3

n d
G

d


   
    
   

 and 
2

n
d   where 

d- is the diameter of the graph. 

 Proof 

   Let G   be a any connected graph without pendent vertex, and  ,d u v  be a maximum length in G , 

That is u v  path is a minimum diameter.  

To prove:  
3

n d
G

d


   
    
   

, the graph G can have at most 
2

n 
 
 

 unique path of length 1d  . And the 

domination number of the path of length 1d   can at most be 
3

d 
 
 

. Therefore domination number of the 

graph can at most be 
3

n d

d

   
   
   

. 

 Therefore,  
3

n d
G

d


   
    
   

.  

Theorem: Let G  be a complete graph, then         1 1, ,G T G T      

       2 2 1 1,..... .n nG T G T        

     Proof 

               For every complete graph there exists a minimum diameter spanning tree and also having equal 

domination. Further, if we reduce the end vertex of the diameter in G and T till we reach trivial graph then we 

get        1 1, ,G T G T            2 2 1 1,..... .n nG T G T       

Sequences of complete graph and minimum diameter spanning tree are denoted as 

 

  G         T   

 
1 1  –  G G v       1 1   T T v   

 
2 1 2  G G v                         2 1 2  T T v   

 
3 2 3  G G v                                                   

3 2 3    T T v 

 

           .......                                                                               .........
  

 .......                      ......... 

 
1nG    single vertex     

1nT    single vertex 

            Here 1, 2, 3, 2............ nv v v v   are the end vertices of the 1 2, 3.......... 2,  nG G G G    respectively. 
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 For example 

                    

   

                    

           Diameter 1                                                                  Diameter 2 

                        

 

               

  

          Diameter 1                                                                                        Diameter 2 

 

               

      

               Diameter 1 

                                                                                                        Diameter 2 

              

  

             Diameter 1                                                                                      Diameter 2 

 

  

               Diameter 1                                                                              Diameter 1                                                                                                                  

                              

Theorem: 

For any graph     ,   ( )). ( dG V E Gs Mi T    

 

 

Proof:  



International Journal of Research in Advent Technology, Vol.7, No.1, January 2019 

E-ISSN: 2321-9637 

Available online at www.ijrat.org 

 

167 

 

For any graph G   has   ( (  )  )dG M T   

Since,  dM T  is the minimum diameter spanning tree with minimum domination number. Clearly 

      dV M T V G and       dE G E M T . As graph G   have same or more edge that  dM T  in 

graph G . A vertex minimum dominating set have more chance to dominate other vertices when compare to 

dominating set of  dM T . Therefore,   dM T  must be greater than or equal to  G . 

Theorem: 

Let    ,  G V E  be a Grid graph. Then G has at least one minimum diameter spanning tree   for which 

 ,  (  (  ) )m n dG M T  .   

Proof 

The proof is given by the method of induction on the number of rows in G . 

Clearly, 

The result is true for   3,  4,  5,..........m   

Than, Assume the result is true for  ,m k  Where     2k  . 

Now, we have to prove that the result is true for 1m k   

Let G   be a graph with 1k   rows, 

Let N   be the diameter of the graph G  . 

Such that   ,   .d u v N  

Now consider the graph H  obtained by  G r . 

Then H   is a simple finite graph with k rows 

If H   is not connected, then there exists a vertex w such that there exist no path between  &  u w  in H  . 

Therefore in the graph G   every path between u   and w   has a vertex v  . This means that in the graph 

   ,   ,     ,    G d u w d u v N  . 

i. e.   ,    d u w N . 

Which is a contradiction, since N  is the diameter of G . 

Therefore r is the end row of the graph. 

By induction hypothesis H has a minimum diameter spanning tree T 1
 from which                                                

    1 dH M T  . 

Now consider the tree T   obtained by adding row r to T 1 
without loss of generality, which is added to nodes 

where domination is exist, from this graph we get diameter is minimum and then domination also same. 

If the domination node does not exist then we have to add any node. 

Clearly, T  is a spanning tree of G  for which  ,  ( ) ( ) m n dG M T  . 

Result:  

 The diameter of ,m nG   is   2m n   only. 

            The diameter of      dM T    {
1,m n m       n           

2m n             
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For some standard graphs γ
 
(G) = γ

 
(T) 

*For any cocktail party graph γ
 
(G) = γ

 
(T) = 2 

*For any sunlet graph γ
 
(G) = γ

 
(T) = 

1

2

n  
 
 

 

* For any web graph γ
 
(G) = γ

 
(T) = n 

*For any lollipop graph γ
 
(G) = γ

 
(T)  

2. CONCLUSION 

In this article, we have discussed few graphs for which the domination number is the same that of its minimum 

diameter spanning tree. Further research can be done in exploring various graphs with the same property. The 

condition for which a graph does not posses such spanning tree may also be explored. 
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